M-Systems, an Israeli company, were granted a US patent on November 14, 2000, titled "Architecture for a [USB]-based Flash Disk", and crediting the invention to Amir Ban, Dov Moran and Oron Ogdan, all M-Systems employees at the time. The patent application was filed by M-Systems in April 1999.[6][1][7] Later in 1999, IBM filed an invention disclosure by one of its employees.[1] Flash drives were sold initially by Trek 2000 International, a company in Singapore, which began selling in early 2000. IBM became the first to sell USB flash drives in the United States in 2000.[1] The initial storage capacity of a flash drive was 8 MB.[7] Another version of the flash drive, described as a pen drive, was also developed. Pua Khein-Seng from Malaysia has been credited with this invention.[8] Patent disputes have arisen over the years, with competing companies including Singaporean company Trek Technology and Chinese company Netac Technology, attempting to enforce their patents.[9] Trek won a suit in Singapore,[10][11] but has lost battles in other countries.[12] Netac Technology has brought lawsuits against PNY Technologies,[13] Lenovo,[14] aigo,[15] Sony,[16][17][18] and Taiwan's Acer and Tai Guen Enterprise Co.[18]

Newegg’s website and online services use cookies and similar technology for a number of reasons: Some technologies allow the site to function. These functional cookies are required to use the site and complete purchases. Another set of technologies improve the browsing experience and personalize it. Here are all the details about Newegg’s Cookie and Privacy Policies. Please select and accept your settings before you continue. Thank you.
For computers set up to be bootable from a USB drive, it is possible to use a flash drive containing a bootable portable operating system to access the files of the computer, even if the computer is password protected. The password can then be changed, or it may be possible to crack the password with a password cracking program and gain full control over the computer. Encrypting files provides considerable protection against this type of attack.
Digital audio files can be transported from one computer to another like any other file, and played on a compatible media player (with caveats for DRM-locked files). In addition, many home Hi-Fi and car stereo head units are now equipped with a USB port. This allows a USB flash drive containing media files in a variety of formats to be played directly on devices which support the format. Some LCD monitors for consumer HDTV viewing have a dedicated USB port through which music and video files can also be played without use of a personal computer.

A recent development for the use of a USB Flash Drive as an application carrier is to carry the Computer Online Forensic Evidence Extractor (COFEE) application developed by Microsoft. COFEE is a set of applications designed to search for and extract digital evidence on computers confiscated from suspects.[48] Forensic software is required not to alter, in any way, the information stored on the computer being examined. Other forensic suites run from CD-ROM or DVD-ROM, but cannot store data on the media they are run from (although they can write to other attached devices, such as external drives or memory sticks).
Original flash memory designs had very limited estimated lifetimes. The failure mechanism for flash memory cells is analogous to a metal fatigue mode; the device fails by refusing to write new data to specific cells that have been subject to many read-write cycles over the device's lifetime. Premature failure of a "live USB" could be circumvented by using a flash drive with a write-lock switch as a WORM device, identical to a live CD. Originally, this potential failure mode limited the use of "live USB" system to special-purpose applications or temporary tasks, such as:
USB flash drives usually specify their read and write speeds in megabytes per second (MB/s); read speed is usually faster. These speeds are for optimal conditions; real-world speeds are usually slower. In particular, circumstances that often lead to speeds much lower than advertised are transfer (particularly writing) of many small files rather than a few very large ones, and mixed reading and writing to the same device.
Yes you can but if you have a lot of files, a flash drive won't back it all up. If you only need to back up 32GB-64GB for example, you could back it up on the flash drive. However, anything bigger isn't sensible for flash drives; you're better off getting an external hard drive. Also, it's not a long-term storage option––it can corrupt easily or be lost.

Original flash memory designs had very limited estimated lifetimes. The failure mechanism for flash memory cells is analogous to a metal fatigue mode; the device fails by refusing to write new data to specific cells that have been subject to many read-write cycles over the device's lifetime. Premature failure of a "live USB" could be circumvented by using a flash drive with a write-lock switch as a WORM device, identical to a live CD. Originally, this potential failure mode limited the use of "live USB" system to special-purpose applications or temporary tasks, such as:

Hardware designers later developed EEPROMs with the erasure region broken up into smaller "fields" that could be erased individually without affecting the others. Altering the contents of a particular memory location involved copying the entire field into an off-chip buffer memory, erasing the field, modifying the data as required in the buffer, and re-writing it into the same field. This required considerable computer support, and PC-based EEPROM flash memory systems often carried their own dedicated microprocessor system. Flash drives are more or less a miniaturized version of this.

USB flash drives are only limited by the cost of the storage space and the physical constraints of the drive. Some of the cheaper flash drives can store less than a gigabyte, but modern high-end flash drives can store as much as 1TB of data, about equivalent to a typical hard drive. A standard external USB drive can store or backup around 64GB, 128GB, 256GB, or 512GB of data. As storage space increases, USB flash drives have become proficient at storing massive files such as ultra high-definition videos that display at 4K or even 8K resolution.
Flash drives may present a significant security challenge for some organizations. Their small size and ease of use allows unsupervised visitors or employees to store and smuggle out confidential data with little chance of detection. Both corporate and public computers are vulnerable to attackers connecting a flash drive to a free USB port and using malicious software such as keyboard loggers or packet sniffers.
These products use flash memory chips, a stable, high-density storage medium, to hold your data. They pack a huge amount of information into a compact form factor. Most thumb drives are less than 2 inches long and easily fit in a pocket, laptop bag or purse. Models with built-in covers protect physical connectors from damage, and select products feature rugged silicon and metal shells that enhance heat and water resistance.
×