^ Also known as a thumb drive, pen drive, gig stick, flash stick, jump drive, disk key, disk on key (after the original M-Systems DiskOnKey drive from 2000),[1] flash-drive, memory stick (not to be confused with the Sony Memory Stick), USB key, USB stick or USB memory. For an incomplete list of alternative names, see the list of redirects to this article.
Original flash memory designs had very limited estimated lifetimes. The failure mechanism for flash memory cells is analogous to a metal fatigue mode; the device fails by refusing to write new data to specific cells that have been subject to many read-write cycles over the device's lifetime. Premature failure of a "live USB" could be circumvented by using a flash drive with a write-lock switch as a WORM device, identical to a live CD. Originally, this potential failure mode limited the use of "live USB" system to special-purpose applications or temporary tasks, such as:

Our tester highly recommended this flash drive for iOS mobile users: “The iXpand is a great resource for backing up media files and for expanding storage, as well as transferring files to a PC.” He added, “The Drive App is easy to navigate and copy files with, as well as operate the camera and play music and video files.” On the other hand, our reviewer reported, “The 30 MB/s write speed on PC is far from horrible but definitely slow for the asking price, and we calculated only about a 12 MB/s when connected to an iOS device.” He ultimately concluded, “A slightly cheaper price would make it the surefire winner in the Lightning connector category.”

Universal Disk Format (UDF) version 1.50 and above has facilities to support rewritable discs like sparing tables and virtual allocation tables, spreading usage over the entire surface of a disc and maximising life, but many older operating systems do not support this format. Packet-writing utilities such as DirectCD and InCD are available but produce discs that are not universally readable (although based on the UDF standard). The Mount Rainier standard addresses this shortcoming in CD-RW media by running the older file systems on top of it and performing defect management for those standards, but it requires support from both the CD/DVD burner and the operating system. Many drives made today do not support Mount Rainier, and many older operating systems such as Windows XP and below, and Linux kernels older than 2.6.2, do not support it (later versions do). Essentially CDs/DVDs are a good way to record a great deal of information cheaply and have the advantage of being readable by most standalone players, but they are poor at making ongoing small changes to a large collection of information. Flash drives' ability to do this is their major advantage over optical media.
Floppy disk hardware emulators exist which effectively utilize the internal connections and physical attributes of a floppy disk drive to utilize a device where a USB flash drive emulates the storage space of a floppy disk in a solid state form, and can be divided into a number of individual virtual floppy disk images using individual data channels.

Flash drives are often measured by the rate at which they transfer data. Transfer rates may be given in megabytes per second (MB/s), megabits per second (Mbit/s), or in optical drive multipliers such as "180X" (180 times 150 KiB/s).[19] File transfer rates vary considerably among devices. Second generation flash drives have claimed to read at up to 30 MB/s and write at about half that rate, which was about 20 times faster than the theoretical transfer rate achievable by the previous model, USB 1.1, which is limited to 12 Mbit/s (1.5 MB/s) with accounted overhead.[20] The effective transfer rate of a device is significantly affected by the data access pattern.[21]
The development of high-speed serial data interfaces such as USB made semiconductor memory systems with serially accessed storage viable, and the simultaneous development of small, high-speed, low-power microprocessor systems allowed this to be incorporated into extremely compact systems. Serial access requires far fewer electrical connections for the memory chips than does parallel access, which has simplified the manufacture of multi-gigabyte drives.
These products use flash memory chips, a stable, high-density storage medium, to hold your data. They pack a huge amount of information into a compact form factor. Most thumb drives are less than 2 inches long and easily fit in a pocket, laptop bag or purse. Models with built-in covers protect physical connectors from damage, and select products feature rugged silicon and metal shells that enhance heat and water resistance.
×