A minority of flash drives support biometric fingerprinting to confirm the user's identity. As of mid-2005,[needs update] this was an expensive alternative to standard password protection offered on many new USB flash storage devices. Most fingerprint scanning drives rely upon the host operating system to validate the fingerprint via a software driver, often restricting the drive to Microsoft Windows computers. However, there are USB drives with fingerprint scanners which use controllers that allow access to protected data without any authentication.[70]
Also, HP has introduced a USB floppy drive key, which is an ordinary USB flash drive with additional possilibility for performing floppy drive emulation, allowing its usage for updating system firmware where direct usage of USB flash drives is not supported. Desired mode of operation (either regular USB mass storage device or of floppy drive emulation) is made selectable by a sliding switch on the device's housing.[51][52]
Some manufacturers deploy physical authentication tokens in the form of a flash drive. These are used to control access to a sensitive system by containing encryption keys or, more commonly, communicating with security software on the target machine. The system is designed so the target machine will not operate except when the flash drive device is plugged into it. Some of these "PC lock" devices also function as normal flash drives when plugged into other machines.
USB flash drives are only limited by the cost of the storage space and the physical constraints of the drive. Some of the cheaper flash drives can store less than a gigabyte, but modern high-end flash drives can store as much as 1TB of data, about equivalent to a typical hard drive. A standard external USB drive can store or backup around 64GB, 128GB, 256GB, or 512GB of data. As storage space increases, USB flash drives have become proficient at storing massive files such as ultra high-definition videos that display at 4K or even 8K resolution.
As highly portable media, USB flash drives are easily lost or stolen. All USB flash drives can have their contents encrypted using third-party disk encryption software, which can often be run directly from the USB drive without installation (for example, FreeOTFE), although some, such as BitLocker, require the user to have administrative rights on every computer it is run on.
Universal Disk Format (UDF) version 1.50 and above has facilities to support rewritable discs like sparing tables and virtual allocation tables, spreading usage over the entire surface of a disc and maximising life, but many older operating systems do not support this format. Packet-writing utilities such as DirectCD and InCD are available but produce discs that are not universally readable (although based on the UDF standard). The Mount Rainier standard addresses this shortcoming in CD-RW media by running the older file systems on top of it and performing defect management for those standards, but it requires support from both the CD/DVD burner and the operating system. Many drives made today do not support Mount Rainier, and many older operating systems such as Windows XP and below, and Linux kernels older than 2.6.2, do not support it (later versions do). Essentially CDs/DVDs are a good way to record a great deal of information cheaply and have the advantage of being readable by most standalone players, but they are poor at making ongoing small changes to a large collection of information. Flash drives' ability to do this is their major advantage over optical media.
Third generation USB flash drives were announced in late 2008 and became available in 2010.[citation needed] Like USB 2.0 before it, USB 3.0 dramatically improved data transfer rates compared to its predecessor. The USB 3.0 interface specified transfer rates up to 5 Gbit/s (625 MB/s), compared to USB 2.0's 480 Mbit/s (60 MB/s).[citation needed] By 2010 the maximum available storage capacity for the devices had reached upwards of 128 GB.[7] USB 3.0 was slow to appear in laptops. As of 2010, the majority of laptop models still contained the 2.0.[23]

Floppy disk drives are rarely fitted to modern computers and are obsolete for normal purposes, although internal and external drives can be fitted if required. Floppy disks may be the method of choice for transferring data to and from very old computers without USB or booting from floppy disks, and so they are sometimes used to change the firmware on, for example, BIOS chips. Devices with removable storage like older Yamaha music keyboards are also dependent on floppy disks, which require computers to process them. Newer devices are built with USB flash drive support.
Third generation USB flash drives were announced in late 2008 and became available in 2010.[citation needed] Like USB 2.0 before it, USB 3.0 dramatically improved data transfer rates compared to its predecessor. The USB 3.0 interface specified transfer rates up to 5 Gbit/s (625 MB/s), compared to USB 2.0's 480 Mbit/s (60 MB/s).[citation needed] By 2010 the maximum available storage capacity for the devices had reached upwards of 128 GB.[7] USB 3.0 was slow to appear in laptops. As of 2010, the majority of laptop models still contained the 2.0.[23]

Counterfeit USB flash drives are sometimes sold with claims of having higher capacities than they actually have. These are typically low capacity USB drives which are modified so that they emulate larger capacity drives (for example, a 2 GB drive being marketed as a 64 GB drive). When plugged into a computer, they report themselves as being the larger capacity they were sold as, but when data is written to them, either the write fails, the drive freezes up, or it overwrites existing data. Software tools exist to check and detect fake USB drives,[43][44] and in some cases it is possible to repair these devices to remove the false capacity information and use its real storage limit.[45]

Particularly with the advent of USB, external hard disks have become widely available and inexpensive. External hard disk drives currently cost less per gigabyte than flash drives and are available in larger capacities. Some hard drives support alternative and faster interfaces than USB 2.0 (e.g., Thunderbolt, FireWire and eSATA). For consecutive sector writes and reads (for example, from an unfragmented file), most hard drives can provide a much higher sustained data rate than current NAND flash memory, though mechanical latencies seriously impact hard drive performance.


These products use flash memory chips, a stable, high-density storage medium, to hold your data. They pack a huge amount of information into a compact form factor. Most thumb drives are less than 2 inches long and easily fit in a pocket, laptop bag or purse. Models with built-in covers protect physical connectors from damage, and select products feature rugged silicon and metal shells that enhance heat and water resistance.
×