Some value-added resellers are now using a flash drive as part of small-business turnkey solutions (e.g., point-of-sale systems). The drive is used as a backup medium: at the close of business each night, the drive is inserted, and a database backup is saved to the drive. Alternatively, the drive can be left inserted through the business day, and data regularly updated. In either case, the drive is removed at night and taken offsite.
In a typical well-conducted review of a number of high-performance USB 3.0 drives, a drive that could read large files at 68 MB/s and write at 46 MB/s, could only manage 14 MB/s and 0.3 MB/s with many small files. When combining streaming reads and writes the speed of another drive, that could read at 92 MB/s and write at 70 MB/s, was 8 MB/s. These differences differ radically from one drive to another; some drives could write small files at over 10% of the speed for large ones. The examples given are chosen to illustrate extremes....′[46]
Digital audio files can be transported from one computer to another like any other file, and played on a compatible media player (with caveats for DRM-locked files). In addition, many home Hi-Fi and car stereo head units are now equipped with a USB port. This allows a USB flash drive containing media files in a variety of formats to be played directly on devices which support the format. Some LCD monitors for consumer HDTV viewing have a dedicated USB port through which music and video files can also be played without use of a personal computer.
Flash memory combines a number of older technologies, with lower cost, lower power consumption and small size made possible by advances in microprocessor technology. The memory storage was based on earlier EPROM and EEPROM technologies. These had limited capacity, were slow for both reading and writing, required complex high-voltage drive circuitry, and could be re-written only after erasing the entire contents of the chip.
USB flash drives are only limited by the cost of the storage space and the physical constraints of the drive. Some of the cheaper flash drives can store less than a gigabyte, but modern high-end flash drives can store as much as 1TB of data, about equivalent to a typical hard drive. A standard external USB drive can store or backup around 64GB, 128GB, 256GB, or 512GB of data. As storage space increases, USB flash drives have become proficient at storing massive files such as ultra high-definition videos that display at 4K or even 8K resolution.
A minority of flash drives support biometric fingerprinting to confirm the user's identity. As of mid-2005,[needs update] this was an expensive alternative to standard password protection offered on many new USB flash storage devices. Most fingerprint scanning drives rely upon the host operating system to validate the fingerprint via a software driver, often restricting the drive to Microsoft Windows computers. However, there are USB drives with fingerprint scanners which use controllers that allow access to protected data without any authentication.[70]
Most flash drives ship preformatted with the FAT32, or exFAT file systems. The ubiquity of the FAT32 file system allows the drive to be accessed on virtually any host device with USB support. Also, standard FAT maintenance utilities (e.g., ScanDisk) can be used to repair or retrieve corrupted data. However, because a flash drive appears as a USB-connected hard drive to the host system, the drive can be reformatted to any file system supported by the host operating system.

Some value-added resellers are now using a flash drive as part of small-business turnkey solutions (e.g., point-of-sale systems). The drive is used as a backup medium: at the close of business each night, the drive is inserted, and a database backup is saved to the drive. Alternatively, the drive can be left inserted through the business day, and data regularly updated. In either case, the drive is removed at night and taken offsite.

Flash memory cards, e.g., Secure Digital cards, are available in various formats and capacities, and are used by many consumer devices. However, while virtually all PCs have USB ports, allowing the use of USB flash drives, memory card readers are not commonly supplied as standard equipment (particularly with desktop computers). Although inexpensive card readers are available that read many common formats, this results in two pieces of portable equipment (card plus reader) rather than one.

USB flash drives use the USB mass storage device class standard, supported natively by modern operating systems such as Windows, Linux, macOS and other Unix-like systems, as well as many BIOS boot ROMs. USB drives with USB 2.0 support can store more data and transfer faster than much larger optical disc drives like CD-RW or DVD-RW drives and can be read by many other systems such as the Xbox One, PlayStation 4, DVD players, automobile entertainment systems, and in a number of handheld devices such as smartphones and tablet computers, though the electronically similar SD card is better suited for those devices.

This USB 3.0 drive offers what the company is calling business-grade security with 256-bit AES hardware-based encryption. You can also choose a stepped up “managed” version that offers a more complete set of management tools using SafeConsole as support. Finally, there’s an anti-virus version that loads in ESET antivirus software out of the box to avoid trojan horses and other hacker tracking programs. All of the models are TAA-compliant, so this drive won’t be in breach of government regulations, and that USB 3.0 means that you’ll have nearly the fastest transfer speeds possible. You can pick it up in sizes ranging from 4GB to 64GB.
USB flash drives are often used for storage, data back-up and transfer of computer files. Compared with floppy disks or CDs, they are smaller, faster, have significantly more capacity, and are more durable due to a lack of moving parts. Additionally, they are immune to electromagnetic interference (unlike floppy disks), and are unharmed by surface scratches (unlike CDs). Until about 2005, most desktop and laptop computers were supplied with floppy disk drives in addition to USB ports, but floppy disk drives became obsolete after widespread adoption of USB ports and the larger USB drive capacity compared to the 1.44 MB 3.5-inch floppy disk.

Português: Transferir Dados de um Pen Drive para um Computador, Italiano: Trasferire i Dati da una Chiavetta USB a un Computer, Español: transferir datos de una unidad flash a una computadora, Русский: перенести данные с флешки на компьютер, Français: transférer des données d'une clé USB sur un ordinateur, Deutsch: Daten von einem USB Stick auf einen Computer übertragen, Bahasa Indonesia: Mentransfer Data dari Kandar USB ke Komputer, Nederlands: Gegevens overzetten van een USB drive naar een computer, العربية: نقل البيانات من وحدة التخزين الخارجية إلى الحاسوب, Tiếng Việt: Chuyển dữ liệu từ USB vào máy tính, ไทย: ย้ายข้อมูลจากแฟลชไดรฟ์ลงคอมพิวเตอร์

As highly portable media, USB flash drives are easily lost or stolen. All USB flash drives can have their contents encrypted using third-party disk encryption software, which can often be run directly from the USB drive without installation (for example, FreeOTFE), although some, such as BitLocker, require the user to have administrative rights on every computer it is run on.

Digital audio files can be transported from one computer to another like any other file, and played on a compatible media player (with caveats for DRM-locked files). In addition, many home Hi-Fi and car stereo head units are now equipped with a USB port. This allows a USB flash drive containing media files in a variety of formats to be played directly on devices which support the format. Some LCD monitors for consumer HDTV viewing have a dedicated USB port through which music and video files can also be played without use of a personal computer.


On the more practical side our flash drives, also called thumbdrives or memory sticks are available in memory capacities from 64MB to 256GB. With memory capacities like that, we certainly have the options to cover whatever your data storage requirements may be. For more information on data storage capacities, check out our USB Flash Drive Capacity Guide.

Flash memory combines a number of older technologies, with lower cost, lower power consumption and small size made possible by advances in microprocessor technology. The memory storage was based on earlier EPROM and EEPROM technologies. These had limited capacity, were slow for both reading and writing, required complex high-voltage drive circuitry, and could be re-written only after erasing the entire contents of the chip.
It's never been easier to take all the files, data or media you want with you wherever you go. Generally about the size of a stick of gum, a USB flash drive lets you store any file from your computer so you can save it, transport it, and load it onto another computer in seconds. You simply plug the flash drive into your USB port and drag any files you want onto its icon on your desktop. Best of all, flash drives have no internal moving parts, so they're very resistant to breaking by being bumped or dropped.
×