Third generation USB flash drives were announced in late 2008 and became available in 2010.[citation needed] Like USB 2.0 before it, USB 3.0 dramatically improved data transfer rates compared to its predecessor. The USB 3.0 interface specified transfer rates up to 5 Gbit/s (625 MB/s), compared to USB 2.0's 480 Mbit/s (60 MB/s).[citation needed] By 2010 the maximum available storage capacity for the devices had reached upwards of 128 GB.[7] USB 3.0 was slow to appear in laptops. As of 2010, the majority of laptop models still contained the 2.0.[23]

Anyone who has accidentally left their flash drive in their pants pockets through a laundry cycle will appreciate the durability of this Samsung drive. Its durable metal casing is waterproof, shockproof, magnetproof, and resistant to high temperatures. The drive is housed inside the metal casing, so it won’t break off (and the keyring is made with the same quality casing, again helping your drive live longer). Samsung believes in this drive enough to provide a five-year warranty should anything happen. Durability isn’t its only perk, either. USB 3.0 and NAND technology gives this drive data transfer respectable read speeds of up to 130 MB/s and write speeds over 100 MB/s. It is also backwards compatible with USB 2.0, but expect a drop in transfer speeds.
A minority of flash drives support biometric fingerprinting to confirm the user's identity. As of mid-2005,[needs update] this was an expensive alternative to standard password protection offered on many new USB flash storage devices. Most fingerprint scanning drives rely upon the host operating system to validate the fingerprint via a software driver, often restricting the drive to Microsoft Windows computers. However, there are USB drives with fingerprint scanners which use controllers that allow access to protected data without any authentication.[70]
Inside the plastic casing is a small printed circuit board, which has some power circuitry and a small number of surface-mounted integrated circuits (ICs).[citation needed] Typically, one of these ICs provides an interface between the USB connector and the onboard memory, while the other is the flash memory. Drives typically use the USB mass storage device class to communicate with the host.[28]
Some file systems are designed to distribute usage over an entire memory device without concentrating usage on any part (e.g., for a directory) to prolong the life of simple flash memory devices. Some USB flash drives have this 'wear leveling' feature built into the software controller to prolong device life, while others do not, so it is not necessarily helpful to install one of these file systems.[39]

USB 2.0 flash drives have a transfer rate of up to 480Mbps, while USB 3.0 flash drives allow for transfer rates 10 times faster — up to 4.8Gbps. However, you can only take advantage of this higher speed if your device has a USB 3.0 port. Although USB 3.0 flash drives and other devices are backwards compatible with USB 2.0 ports, they will only operate at a USB 2.0 rate.
×