Universal Disk Format (UDF) version 1.50 and above has facilities to support rewritable discs like sparing tables and virtual allocation tables, spreading usage over the entire surface of a disc and maximising life, but many older operating systems do not support this format. Packet-writing utilities such as DirectCD and InCD are available but produce discs that are not universally readable (although based on the UDF standard). The Mount Rainier standard addresses this shortcoming in CD-RW media by running the older file systems on top of it and performing defect management for those standards, but it requires support from both the CD/DVD burner and the operating system. Many drives made today do not support Mount Rainier, and many older operating systems such as Windows XP and below, and Linux kernels older than 2.6.2, do not support it (later versions do). Essentially CDs/DVDs are a good way to record a great deal of information cheaply and have the advantage of being readable by most standalone players, but they are poor at making ongoing small changes to a large collection of information. Flash drives' ability to do this is their major advantage over optical media.
The applications of current data tape cartridges hardly overlap those of flash drives: on tape, cost per gigabyte is very low for large volumes, but the individual drives and media are expensive. Media have a very high capacity and very fast transfer speeds, but store data sequentially and are very slow for random access of data. While disk-based backup is now the primary medium of choice for most companies, tape backup is still popular for taking data off-site for worst-case scenarios and for very large volumes (more than a few hundreds of TB). See LTO tapes.
Like all flash memory devices, flash drives can sustain only a limited number of write and erase cycles before the drive fails.[71][unreliable source?][72] This should be a consideration when using a flash drive to run application software or an operating system. To address this, as well as space limitations, some developers have produced special versions of operating systems (such as Linux in Live USB)[73] or commonplace applications (such as Mozilla Firefox) designed to run from flash drives. These are typically optimized for size and configured to place temporary or intermediate files in the computer's main RAM rather than store them temporarily on the flash drive.
“The solid state flash drive can theoretically achieve incredibly high transfer speeds, blurring the line between an external solid state drive and a flash drive,” our tester raved. He did note he was “unable to reach higher than half the listed read and write speeds.” However, he explained, “The Extreme Pro is still very fast compared to other USB 3.0 flash drives.” In the end, our tester recommended this flash drive “with the caveat that there's a good chance you won't see those 300+ MB/s transfer speeds.” He also added that for just a little more, you could invest in an external hard drive—if the ultra-compact form factor isn’t important in your buying decision.
To ensure this information isn't stolen as well, having a locked flash drive can keep anyone from viewing your files should the drive fall into the wrong hands. Tiny and portable, they easily slip into a pants or coat pocket, in a computer bag or purse, and come in a variety of shapes and sizes. External keypads add an additional level of security to portable memory, meaning a viewer must first input a numerical code to gain access to files. These in turn can be encrypted and password protected, deterring serious threats to personal security.
Some value-added resellers are now using a flash drive as part of small-business turnkey solutions (e.g., point-of-sale systems). The drive is used as a backup medium: at the close of business each night, the drive is inserted, and a database backup is saved to the drive. Alternatively, the drive can be left inserted through the business day, and data regularly updated. In either case, the drive is removed at night and taken offsite.
There are 2 ways; which one depends on how many USB ports you have. If you have 2, then put both flash drives in, open up in the file browser and move the information between the two drives in the file browser. If there is only one socket, put the first flash drive in and place the files to be transferred on the computer, then unlpug and put the next drive in. If you have no USB ports, you will need an adapter (Mac). You could also transfer files to the Cloud, then download them onto the other flash drive.
A recent development for the use of a USB Flash Drive as an application carrier is to carry the Computer Online Forensic Evidence Extractor (COFEE) application developed by Microsoft. COFEE is a set of applications designed to search for and extract digital evidence on computers confiscated from suspects.[48] Forensic software is required not to alter, in any way, the information stored on the computer being examined. Other forensic suites run from CD-ROM or DVD-ROM, but cannot store data on the media they are run from (although they can write to other attached devices, such as external drives or memory sticks).
It's never been easier to take all the files, data or media you want with you wherever you go. Generally about the size of a stick of gum, a USB flash drive lets you store any file from your computer so you can save it, transport it, and load it onto another computer in seconds. You simply plug the flash drive into your USB port and drag any files you want onto its icon on your desktop. Best of all, flash drives have no internal moving parts, so they're very resistant to breaking by being bumped or dropped.